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Abstract. In a companion paper (Wilmott and Fitt (1992)) a model was proposed for the separated high Reynolds 
number flow past a three-dimensional slender axisymmetric body. This 'composite' model assumes that downstream 
of the body there is both a region of constant pressure and a Prandtl-Batchelor region. Matched asymptotic 
expansions were employed to recover a non-linear integro-differential equation for the shape of the separated 
region and some asymptotic solutions were obtained. The present study concerns the numerical solution of this 
equation and more detailed results concerning the cavity shape and closure properties. 

1. Introduct ion  

In Wilmott  and Fitt (1992) a ' composi te '  model  was proposed for the high Reynolds number  
flow past  an axisymmetric three-dimensional  body. This model  may be thought  of as a 
combinat ion  of the classical constant pressure He lmhol tz -Ki rchhof f  model  and the constant 
vorticity Prand t l -Ba tche lor  model  (see, e.g. Childress, 1966). In spite of the simplicity and 
elegance of these models,  it has long been known that,  if either model  is used alone to try to 
describe separated flows, each suffers f rom the drawback that they display poor  agreement  
with experiment .  For  two-dimensional flow, much bet ter  agreement  with exper iment  was 
obta ined by the composi te  model  of O 'Mal ley  et al. (1991) where the separated region was 
assumed to consist of a constant-pressure region followed by a region of (unknown) constant 
vorticity. In the two-dimensional  case, the entire problem may be reduced to a single 
nonlinear  singular integro-differential equation ( N L S I D E )  with a Cauchy kernel  that must 
be  solved in order  to determine the shape of the dividing streamline. Although the solution 
of such equations is far f rom a trivial mat ter ,  effective numerical procedures  have been 
developed  (see also Fitt et al., 1985) that allow the problem to be solved with accuracy and 
economy.  The  current  study focuses on the axisymmetric case, where the numerical  solution 
of the relevant  N L S I D E s  presents a much more  formidable challenge. In the next section 
some of the difficulties involved are discussed and the (very few) previous at tempts  to solve 
similar problems are reviewed. 

A schematic diagram of the flow appears  in Fig. 1. The slender axisymmetric body is 
assumed to have a radius H 1 and the cavity reattaches smoothly to an af terbody of radius H 2. 
The  region Ril (length L )  is one of constant pressure,  whilst the region Ri2 (length 

*See also Journal of Engineering Mathematics 26: 539-555, 1992. 
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Fig. 1. Definition sketch showing the separating stream surface, stagnant zone Ril, Prandtl-Batchelor region Ri2 
and equivalent afterbody. 

( a -  1 )L)  is a Hill's vortex (see Hill, 1894). This is the axisymmetric analogy of a 
Prandt l -Batche lor  region of constant vorticity in two-dimensional flow, and, according to a 
classical result of Batchelor (1955) the vorticity therein is proportional to the radial distance 
g .  

In Section 2 below the flow model is summarized and possible numerical approaches are 
discussed. The numerical method that was used in this study is explained in Section 3, whilst 
Section 4 contains numerical results of both test cases and real computations. Some 
conclusions concerning the model and the numerical solution of such equations are drawn in 
Section 5. 

2. The composite axisymmetric cavity equation 

In Wilmott  and Fitt (1992) matched asymptotic expansions were employed to determine the 
equation satisfied by the cavity boundary. The small parameter  in the problem was given by 
e, which was itself defined by 

2 P= --Pc 
E 1 2 ~pU~ 

Here  p~ denotes the pressure far away from the axisymmetric body, Pc is the pressure in the 
cavity Ril,  whilst p and U~ are respectively the free stream density and velocity; E is small 
because the body is slender. Denoting the cavity boundary by r* -- R*(x*),  where the star 
indicates that lengths have been non-dimensionalized with e, it was shown that R* satisfies 
the NLSIDE 

E 2 1 ] 
['1/2 (0 x a) 

1 - ( R ' R * ' ) '  R* ~[h* = - ~ R  *'2 log + (1) 
--~-+ fl*2R*4/32 ( l ~ < x ~ < a ) .  L 
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Here derivatives are denoted by a prime, h* is the scaled jump in the Bernoulli constant 
across the dividing separating streamline and/3* is the scaled vorticity in region Ri2. The 
interested reader is referred to Wilmott and Fitt (1992) for the details of (1) and the scalings. 
(Note that Wilmott and Fitt (1992) contains some minor typographical errors.) 

For both analytical and numerical purposes (1) is somewhat inconvenient, and it proves 
significantly simpler to work in terms of the cavity area rather than the radius. Setting 

T(x) = 7rR*Z(x) 

and dropping the stars for convenience, the equation becomes 

dxd [T'(x)[log(e/2) - log~/x(a - x)] - 1  f ;  T'(~) -~_~T'(x) d~] 

-~ ~ ~----5 - - l ° g  = 7rh+/32T2(x)/16~r ( l ~ x ~ o 0 "  (2) 

Continuity of pressure at x = 1 requires that 

/32T2(1) 
h = l  

167r 2 ' 

and the boundary conditions are 

~'H~ 7rH~ 
T(0)=-eZL2, T ( a ) :  •2L2'  

and (assuming smooth separation and reattachment) 

T'(O) = T'(a) = O. 

As far as numerical calculations are concerned, it transpires that for practical purposes it is 
best to perform some preliminary simplification on (2). Splitting the integral term into two 
portions, integrating by parts and differentiating, we find that the equation may be written 

1 f, T"(~) - T"(x) . T"(x) [ •ZT(x) ] 
---2 -~ ~-_- ~] d~ ~- ~ log[ 4 -~(a _---x) j 

T'2(x) {~  (0~<x~< 1) 

+ ~ -  _f12[TZ(1)_T2(x)]/16~ r (l~<x~<a) 

with 

zrH~ ~-H 2 
T(0) : -•2L2 , T(a) = •2L2 , T'(0) = T ' ( a ) =  0. (3) 

The equation may also be expressed in other forms, but we proceed henceforth using (3). 
In Wilmott and Fitt (1992) there was a discussion of the relationship between the 

boundary conditions and the requirement of cusped closure. Provided that both H 1 and H 2 
exceed zero, cusped closure, and hence finiteness of pressure, is ensured by T'(0) = T'(a) = 
0. An asymptotic analysis given in Wilmott and Fitt (1992) showed that under these 



66 A.D.Fitt and P. Wilmott 

conditions, it follows that T"(0) = T"(a) = 0. A result of the discussion contained therein is 
that, in the case when H 2 = 0 and therefore T(a)= 0 it would be possible to improve the 
model by employing a more sophisticated slender body theory. 

2.1. Consistency conditions for the equation and discussion 

Before discussing possible numerical strategies for the solution of (3), we note the important 
result that not all of the parameters in (3) are independent. This fact has been noted before 
for two-dimensional models by Childress (1966), who derived relationships by what 
amounted essentially to a global force balance, and by O'Malley et al. (1991) using a simpler 
argument. A similar analysis is applicable in the present case. Multiplying equation (3) 
through by T'(x) and integrating from 0 to a with respect to x allows the whole of the 
right-hand side and much of the left-hand side of the equation to be integrated immediately, 
giving 

1 f ;  [ T " ( x ) T ' ( x ) l o g ( x ( a - x ) ) +  T'(x)(fo T"(~)-T"(x) 

16~-/32 (T2(1)T(a) T3(a)3 2T3(1)) ' 

An integration by parts shows that the left-hand side is identically zero, so that 

/3 2 = 16zr2(T(a) - T(0)) 

TZ(1)r(a) r3 (a  ) 2T3(1) . (4) 
3 3 

This result effectively relates the vortex strength to the height of the obstacle and the length 
of the constant pressure region; numerically it is an important result as it allows /3 to be 
removed from the problem. 

As in the two-dimensional case, it is also possible to derive a second consistency condition. 
First, we note that the integral term in equation (3) vanishes identically when integrated with 
respect to x from 0 to a. This gives 

~ T"(x) 1 41rx(a - x) ~-log T(x) + log dx = ~ -  [T2(1)-T2(x)]dx. (5) 

As in the two-dimensional case, (5) will prove to be an invaluable check on any numerical 
results produced. 

2.2. Numerical schemes for solving the integral equation 

Before describing a method for the numerical solution of (3), we consider briefly the 
previous work that has taken place, and point out some of the particular difficulties posed by 
(3). First, we note that methods in the spirit of those that have proved so successful in 
two-dimensional cases (see, e.g. O'Malley et al., 1991) are not possible here. In two- 
dimensional models the kernels that typically arise are of Cauchy type, and may therefore be 
inverted using standard techniques. Subsequent integrations may then be performed to 
remove all derivatives and singular integrations from the problem, making the equations 
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much easier to deal with numerically. In the present case this not possible, as there are no 
simple inversion formulae for the modulus kernel in (3). We also note that (3) contains 
second derivatives within the integral term. Any low-order form of approximation (for 
example, one that employs piecewise constant, linear or quadratic basis functions) is thus 
doomed to failure as the integral term will inevitably vanish. 

Although there is very little literature concerning the numerical solution of integral 
equations such as (3), problems with certain similarities to (3) have been considered before. 
Bliss (1982) analyses the flow through a single slot of finite length L, typical width a and 
planform t(x) in a wall separating a uniform free stream and a quiescent fluid at a different 
static pressure. The motivation of his study was the need to understand the aerodynamic 
behavior of slots in transonic wind tunnel walls. Under the assumption that the displacement 
of the free surface is small compared to the slot width, it may be shown that, for subsonic 
flows when the Mach number M is less than unity, the free surface displacement S(x) satisfies 
the equation 

S ' (x)( log[  a2(1 L2 ] x)] t -~) l°g  16~ 7 M : ) -  j + log[ax(1 - + 

fo Io {EL'~ 2 S ' (~ )  dE S'(x) - S ' (~ )  
= ~'k---d--} x + ~ + T ~ - -  ~ ds c . (6) 

In contrast to our model, the free surface is never required to reattach and the pressure in 
the slot is u n i f o r m -  there is no recirculating region. 

In spite of the many similarities between (6) and (3), the numerical solution of (6) is much 
simpler as the unknown function S(x) occurs only in differentiated form, and moreover 
appears in a linear fashion. The problem may therefore be solved in straightforward manner 
by using piecewise constant approximations for the derivatives of S. It was found using this 
method that accurate solutions could be produced in an economical way, and the scheme 
could also be used to study the similar case of supersonic flow. Similar remarks also apply to 
the equations for the stretching of a slender, axisymmetric viscous inclusion that were 
studied by Fitt and Wilmott (1989), though in this case the flow was unsteady and it was 
necessary to solve an additional evolution equation. 

There appears to be very little literature other than that mentioned above concerning 
equations that possess similarities to (3). Accordingly we proceed below in an ad hoc 
fashion. 

3. A numerical method for solving the integral equation 

We now propose a method for the numerical solution of the governing integro - differential 
equation (3). As discussed above, there seems to be little literature concerning numerical 
methods for nonlinear in t eg ro -  differential equations with modulus kernels, and it seems 
most unlikely we will be able to supply numerical convergence proofs for (3), thus an ad hoc 
method will be proposed. 

The interval [0, a] is discretized into N equal intervals of length h where h N  = a, the 
intervals being bounded by the points x 0 = 0, x s = a. The method may easily be modified to 
include the case of unequal mesh spacing (so that, for example, mesh points could be 
clustered near x = 0 and x = a)  but some preliminary experiments showed that this was not 
necessary. The values of T(x) at the end points of the interval being known, collocation is 
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used to determine T(x) at the N -  1 interior points of the interval. Because of the second 
derivatives that appear in the integral term of (3), T(x) is approximated using cubic splines. 
Writing T(Xk) = Tk, we approximate T(x) in the interval [Xk, Xk+I] by 

1 
T(x) = Tk(x ) = ~ [Mk(Xk+ 1 -- X) 3 + Mk+I(X - -  Xk) 3 + (Xk+ 1 - -  x)(6T~ - hZMk) 

+ (x - Xk)(6Tk+ ~ - hZmk+l)]  

so that 

1 
T'k(X ) = - ~  [3(Mk+ I(X - xk) 2 - Mt,(x - Xk+1) 2) -- 6(T  k - Tk+l) + h2(Mk - Mk+l) ] 

1 
T~(x) = -~ [--Mk(X -- Xk+l) + mk+l(X - -  Xk) ] . 

The spline coefficients M k (k = 0, 1 , . . . ,  N) are chosen in the normal way to ensure that the 
approximation to T(x) has continuous first and second derivatives, and additionally to ensure 
that two out of the four conditions T ' ( O ) =  T ' (o  0 = T" (O)= T " ( a ) =  0 are satisfied. The 
spline equations are therefore given by 

2 M  o + M 1 = 6 ( T  1 - To)/h 2 ( T ' ( 0 )  = 0)  

Mo = 0 ( r " ( 0 )  = 0)  

6 
Mk_ 1 + 4 M  k +Mk+ ~ - h E ( T k +  1 - 2 T  k + Tk_~) ( k = l , 2  . . . . .  N - l )  ( 7 )  

{ M N _  ~ + 2 M  u = 6 ( T N _  ~ --  T N ) / h  2 ( T ' ( a )  = O) 

M u = 0 (r"(a) = 0) .  

The remaining N -  1 equations are given by collocation, and an additional advantage of 
the spline representation is that the integral term may now be evaluated analytically. After 
some work we find that, evaluated at the collocation point xj, the integral term in (3) is given 
by 

- - - -  I j k  
2 k= 0 

where 

jk 

' ( ) (Mk+~ - Mk)  + Qjk log j -- k - 1 
j - k  

Mk+ 1 -- M k 

M k - -  M k +  1 

( j < k )  

( j = k )  
( j = k + l )  

( / > k + l )  

and 

Qjk = ( k - j  + 1 ) M  k -  ( k - j ) M k +  ~ - M j .  
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Discretizing the remaining terms in (3) at x =xj in the obvious manner,  we find that the 
N -  1 collocation equations that close the system are 

-- N~I~._ -I- Mj [- ~ 2 T/--- 1 (6(Ti+l- Tj)- h2(Mj+l -~ 2Mj)) 2 
k=0 ~--  log L 47r(a -x j )x jJ  + 144h2Tj 

{; = -~2(r2(1)-r2(xj))/16~- ( l~x j  ~) ( j = I , . . . , N - 1 )  (8) 

where,  from the consistency condition discussed above, /3 is given by (4). 
Clearly there are many possible ways to proceed;  one possibility is to guess an initial 

profile for T(x), generate the spline coefficients by solving the linear equations (7), and then 
solve (8) to produce new values for the Tn, proceeding thereafter  by iteration until a 
complete solution is determined. Numerical experiments show however that this tends to be 
an ill-conditioned procedure and extremely severe relaxation has to be employed in order  to 
obtain a solution even for a low number  of computational points. Another  attractive 
possibility is to treat the equations (8) as linear equations for the spline coefficients, and 
consider (7) as equations for the Tj. Unfortunately however this stratagem suffers from 
similar defects. After  much experimentation, it has emerged that a superior method is to 
solve all of  the equations simultaneously, ignoring the fact that some are in fact linear and 
treating the whole system as a set of non-linear equations. 

Treating the 2N equations (7) and (8) as a system of non-linear equations, the Powell 
(1970) hybrid method was used to determine a solution. This method is essentially an 
extension of the well-known Levenburg-Marquard t  scheme in which, to solve f ( x )=  0, 
successive updates x u) of the solution are calculated according to a rule of the type 

x ( i + l )  = x(i) q_ (jT(xj)J(x]) + Aj[) - I jT~) f (x])  

where J is the Jacobian and the Aj are to be chosen. Space does not permit  a fuller 
explanation of the method,  but it combines some of the best features of both Newton's  
method  and the method of steepest descents, whilst using approximate values for the 
Jacobian in order  to preserve economy. The method is easily available in the form of the 
N A G  library routine C05NBF. 

4. Numerical results and discussion 

The  method described above was coded in F O R T R A N  77 using D O U B L E  PRECISION,  
running on a SUN SPARC-2. In all the cases described below, the method converged 
quickly. The method as described above also provides for some additional checks to 
determine whether  or not the current value of a is the correct one; firstly the two (either first 
or second) derivative conditions that have not been imposed may be examined, and secondly 
we may examine the consistency condition (5) to see whether it is satisfied. In the cases 
described below, library routines were used to calculate the integrals appearing in (5). 

4.1. A numerical test case 

In order  to test the numerical method,  calculations were first carried out using a test case. 
Although realistic test cases are hard to construct, by ignoring the right-hand side of (3) it is 
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poss ib le  to test the numer ica l  scheme on  a p rob lem that  shares a lmost  all of the 

character is t ics  of the original  one.  It may easily be checked that ,  if the r ight -hand side is 

rep laced  by 

9x4q2(fl + 4X 2 -- 5XOt) 2 5q(--44X 3 + 6 6 a x  2 - 24Xa 2 + ot 3) 

aS(T(O)a 5 + T(a)x3~ - x3/3T(0)) 

E T(O) + 
+ 30 q x (2x2 -  3ax + az) l°g[ 5 4-~(x(a----~ ] 

where  

q = T(a) - T(O), 13 = 10a 2 _ _  15ax + 6x 2 

5 O~ 

t h e n  the so lu t ion  to the p rob l em is given (for arbi t rary  a > 1) by 

qx3fl 
r(x) = r(o) + - - - 7 -  

Ol 

For  this so lu t ion  both  the first and  second derivat ives are zero at bo th  ends  of the range.  The  

p r o b l e m  was solved using the me thod  descr ibed above ,  for a var ie ty  of condi t ions  and  for 

d i f fe rent  n u m b e r s  of mesh points .  Typical  results are given in the tables below;  in Tab le  1 

zero first der ivat ives  were forced at each end ,  whilst in the second set of results (Table  2) the 

second  der ivat ives  were set to zero at the ends of the range.  In  bo th  cases the p a r a m e t e r  

va lues  ~ = 1/100,  a = 5, T ( 0 ) =  5 and  T(a)= 1 were used. 

A n u m b e r  of conclus ions  may  be drawn f rom the test cases; in all cases the results  are 

clearly very satisfactory,  with accurate  values  be ing p roduced  for the var iable  T(x) even  with 

on ly  a very few col locat ion points .  The  results also show that ,  as might  be  expected,  in 

genera l ,  it is be t t e r  to prescr ibe the second derivat ives to be zero at the ends  of the interval .  

Some  fur ther  exper iments  were carr ied out  with a larger n u m b e r  of mesh points ;  as is 

c o m m o n l y  observed  in spline and  in te rpo la t ion  methods ,  it was found  that  when  the n u m b e r  

of kno t s  is very large there  was no  significant i m p r o v e m e n t  in the results.  Accord ing ly  it was 

Table I. Results for test case with derivatives zero at cavity ends 

x N = 5 N = 10 N = 20 N = 50 N = 100 EXACT 

0.0 5.000 5.000 5.000 5.000 5.000 5.000 
0.5 4.962 4.965 4.966 4.966 4.966 
1.0 4.745 4.763 4.768 4.768 4.768 4.768 
1.5 4.344 4.347 4.348 4.348 4.348 
2.0 3.719 3.729 3.730 3.730 3.730 3.730 
2.5 3.002 3.001 3.000 3.000 3.000 
3.0 2.290 2.275 2.271 2.270 2.270 2.270 
3.5 1.659 1.653 1.652 1.652 1.652 
4.0 1.259 1.239 1.233 1.232 1.232 1.232 
4.5 1.039 1.035 1.034 1.034 1.034 
5.0 1.000 1.000 1.000 1.000 1.000 1.000 

T"(O) -2.816E - 1 -9.852E - 2 -2.805E - 2 3.701E - 3 8.284E - 4 0.000 

T"(a) 2.973E - 1 1.152E - 1 4.273E - 2 8.959E - 3 3.740E - 4 0.000 
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Table 2. Results for test case with second derivatives zero at cavity ends 
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X N = 5 N = 10 N = 20 N = 50 N = 100 EXACT 

0.0 5.000 5.000 5.000 5.000 5.000 5.000 
0.5 4.961 4.965 4.966 4.966 4.966 
1.0 4.731 4.763 4.768 4.768 4.768 4.768 
1.5 4.344 4.347 4.348 4.348 4.348 
2.0 3.717 3.729 3.730 3.730 3.730 3.730 
2.5 3.002 3.000 3.000 3.000 3.000 
3.0 2.295 2.274 2.271 2.270 2.270 2.270 
3.5 1.659 1.654 1.652 1.652 1.652 
4.0 1.277 1.239 1.233 1.232 1.232 1.232 
4.5 1.040 1.035 1.034 1.034 1.034 
5.0 1.000 1.000 1.000 1.000 1.000 1.000 

T'(0) 0.000 0.000 0.000 0.000 0.000 0.000 

T'(a) -1.124E - 1 -2.095E - 2 -3.510E - 3 -2.220E - 4 -4.370E - 6 0.000 

d e c i d e d  to  use  a m a x i m u m  of  100 kno t s  in the  ca lcu la t ions  r e p o r t e d  be low.  A l l  of  these  

conc lus ions  were  also con f i rmed  by  m a n y  o t h e r  tes t  cases  tha t  were  run  bu t  a re  now shown  

h e r e  for  the  sake  o f  b rev i ty .  

In  sp i te  o f  this  e n c o u r a g i n g  a g r e e m e n t ,  it  is i m p o r t a n t  to rea l i se  tha t  it w o u l d  be  

u n r e a s o n a b l e  to  expec t  this level  of  accuracy  when  (3)  is so lved  numer ica l ly .  F o r  the  tes t  

case ,  the  r i gh t -hand  s ide  o f  the  e q u a t i o n  is not  on ly  chosen  in wha t  mus t  be  r e g a r d e d  as a 

ve ry  spec ia l  way ,  bu t  also t he re  is no  cons i s tency  cond i t i on ,  and  in the  full p r o b l e m  it is this  

t ha t  g u a r a n t e e s  tha t  b o t h  T"(0)  and  T"(a) are  zero .  A d d i t i o n a l l y ,  the  a sympto t i c  ana lys is  of  

W i l m o t t  and  F i t t  (1992) shows tha t  the  de ta i l s  of  the  local  so lu t ion  a re  ve ry  sub t le ,  and  

m o r e o v e r  in the  l imi t ing case  l o g • - - - ~ - ~  it is imposs ib l e  to sat isfy the  co r rec t  s e c o n d  

d e r i v a t i v e  b o u n d a r y  cond i t ions  at the  ends  of  the  range .  F ina l ly ,  and  p e r h a p s  mos t  

i m p o r t a n t l y ,  a so lu t ion  exists  to  the  tes t  p r o b l e m  for  any va lue  of  a .  This  con t ra s t s  wi th  the  

full  p r o b l e m ,  w h e r e ,  once  the  cavi ty  he igh ts  at each  end  and  the  smal l  p a r a m e t e r  e have  

b e e n  spec i f ied ,  the  quan t i t y  a is un ique ly  d e t e r m i n e d .  

4.2. Numerical results for the full problem 

In  this  sec t ion ,  s o m e  numer i ca l  resul ts  for  the  full p r o b l e m  (3) a re  d iscussed.  G u i d e d  by  the  

tes t  cases  and  a la rge  n u m b e r  of  numer i ca l  e x p e r i m e n t s ,  all resul ts  g iven b e l o w  were  

c o m p u t e d  us ing the  ve r s ion  of  the  scheme  where  the  s econd  der iva t ives  were  p r e s c r i b e d  to 

b e  ze ro  at  the  end  po in t s  o f  the  in terva l .  

A s  d i scussed  a b o v e ,  the  quan t i t y  a mus t  be  d e t e r m i n e d  for  each  set  of  da ta ;  this  involves  

an  i t e r a t i ve  p rocess .  F o r  a success ion of  va lues  of  a ,  the  s lopes  at e i the r  end  of  the  cavi ty  

we re  e x a m i n e d ,  as was the  accuracy  of  the  cons i s tency  cond i t i on  (5).  Typ ica l ly ,  for  e x a m p l e  

w h e n  the  a p p r o x i m a t e  va lue  o f  a was t a k e n  to  be  sma l l e r  t han  the  co r rec t  va lue ,  the  

fo l lowing  b e h a v i o u r  was o b s e r v e d .  A s  a was inc reased ,  it was f o u n d  tha t  the  s lopes  at  the  

cav i ty  ends  and  the  d i f fe rence  b e t w e e n  the  r ight-  and  l e f t -hand  sides o f  (5)  s i m u l t a n e o u s l y  

t e n d e d  to ze ro ,  as expec t ed .  

F igu re s  2(a) and  2(b)  show numer i ca l  resul ts  for  a typica l  case,  specif ical ly  when  the  va lues  

• = 1 /100,  T(0)  = 6 and  T(a) = 1 are  used .  F o r  the  resul ts  shown 100 mesh  po in t s  we re  used  
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Fig. 2(a). Calculated cavity shape for T(0) = 6, T(a) = 1 E = 1/100 (afterbody shown dotted). (b) Calculated scaled 
1 2 2 pressure coefficient Cp = (p-p=)/(~pU~ ) for T(0) = 6, T(a)= 1 e = 1/100. 

and a was determined to have a value of  6.50. Figure 2(a) shows the cavity shape whilst Fig. 
2(b)  shows  the pressure coefficient 

p _ _  p ~ ,  

C p  1 ~ r T  2 2 • 

S o m e  studies were  also carried out to examine  the dependence  of  the results on the number  
of  mesh  points used. Employ ing  10, 20, 40 and 70 mesh points the computed  values for a 
were  7.44,  7.04,  6 .72 and 6.56,  respectively,  whilst for 200 mesh points the results were 
virtually indistinguishable from the case shown.  Such behaviour is typical of  all the cases 
further considered below.  

The  m e t h o d  described above  relies crucially on the fact that it is possible to determine a 
for each case by examining the derivatives o f  T(x) at each end of  the cavity. Figure 3 shows  

0 .8  

0 .6  

0~4 

0 .2  

0 
4 b 8 1 0  ;-2 

t l  

T'(O) 

T'(a) 

Fig. 3 Cavity slopes at x = 0 (solid line) and x = a (dotted) for various values of a. 
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Fig. 4. Calculated cavity shapes for T(0) = 3, e = 0.001 and afterbody heights 2, 1, 0.5 and 0.1 (afterbodies shown 
dotted). 

calculated values of  T ' (0 )  (solid line) and T'(a) (dotted line) plot ted against a.  It  will be 
observed that both  derivatives are simultaneously zero when a = 6.50. For this value of a the 
consistency condition (5) is also satisfied to a good degree of approximation.  

Figure 4 shows the effect of decreasing the height of the afterbody. As discussed above,  
we cannot  expect to generate  solutions with zero curvature when the af terbody height is 
zero,  but for any positive af terbody height the numerical scheme proceeds in an identical 
fashion to the cases described above. For the calculations shown, 100 mesh points were used 
and the values • =0 .001,  T ( 0 ) =  3 and T ( a ) = 2 ,  1, 1/2 and 1/10 were used, the corre- 
sponding calculated values of a being given respectively by 2.45, 4.10, 5.60 and 6.45. Fur ther  
numerical  experiments  have shown that,  as might be expected,  when the height of  the 
af terbody approaches  zero it becomes increasingly difficult to compute  solutions that possess 
zero derivative at the right-hand end of the cavity. 

4.3. Numerical solutions for the case log e ~ - ~  

Al though for arbitrary values of • the complexity of (3) precludes closed-form solutions, for 
very small values of • solutions may be determined for the purposes of  comparison.  Naively 
letting •----~ 0 in (3) simply results in the s tatement  that the second derivative of T is zero. 
Using the numerical  method described above it may easily be confirmed that  if smaller and 
smaller  values of • are used, then the computed  solution rapidly approaches  the function 
T(x) = T ( O ) + x ( T ( a ) -  T(O))/a. In this limiting case a is arbitrary and both sides of the 
consistency condition (5) degenerate  to zero. This degenerate  exact solution is well 
r eproduced  whatever  combinat ion of first and second derivatives are prescribed at the ends 
of  the cavity; if the contradictory conditions T ' (0 )  = 0 or T'(a) = 0 are used then the second 
derivative of the computed  solution merely jumps at the ends of the cavity. 

A far more  interesting limit occurs when limit • ~ 0 is examined and the natural  scalings 
are carried out as in Section 4 of  Wilmott  and Fitt (1992). Setting T(x) = U(x)/(-log •) and 
/3 = - y  l o g •  we have, in the limit •---~0, 

,~-X 2 

U(x)=DI 2 (0~<x~<l)  

and for l ~ < x ~ < a  

~ v(x~ d~ 
Ol - - X  = 

aDz V - P ~  3 + Q~ + R 
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Fig. 5. Comparison between computed points (symbol) and exact solution (solid line) for the case • ~ O. 

where D 1 = U(0), O 2 = U ( a )  and 

3' T2U(1) 2 U )3 
P - 247r '  Q = - 2 ~  + 8 - - - - - ~  ' R = 27rU(a) - ~ U(1)Eu(a) 

For a given D 1 and D 2 continuity of U and its first derivative at x = 1 then further require 

o - ~-/2 d~ 
- 1 = (9 )  

. ,D2 ~/_p~3 + Qs c + R 

and 

= 1 3 2 _ ./r/2)3) y2 (D2(D1 _ ~'/2) 2 - ~  D 2 - 3  (DI D 2 - D 1 161r 2 

so that a may be determined. 

Figure 5 shows a comparison between the exact solution described above and numerical 

calculations carried out with 100 points using the values D 1 -- 5, D 2 = 1 and e - -  1 0  - 1 ° ° .  For 

this case it is found from (9) that a ~ 2.0488. In contrast to the cases discussed above, the 

first derivatives of T were prescribed to be zero at the cavity ends; in this limiting case the 

(non-zero) second derivatives are given by 

2 

Y U"(0) = - ' n ' ,  U"(a) = -'/7" -1- ~ ((V 1 - ~ /2)  2 - D~) (10) 

A value for a was therefore determined by minimising the difference between (10) and the 

computed values of the second derivatives at the cavity ends. The result a calculated value of 

a -- 2.03. In Fig. 5 the exact solution is shown using a solid line whilst the computed points 

are denoted by symbols. The agreement is clearly extremely satisfactory, and provides 
further evidence of the success of the numerical method. 

5. C o n c l u s i o n s  

A numerical method has been developed for the solution of a nonlinear singular integro- 

differential equation. The method relies on the approximation of the unknown function 

using cubic splines, and collocation at the interior points of the computational region. 
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A l t h o u g h  the  i n h e r e n t  non - l i nea r i t y  of  the  p r o b l e m  m e a n s  tha t  n u m e r i c a l  c o n v e r g e n c e  

p r o o f s  a re  no t  ava i l ab le ,  by  cons ide r ing  tes t  cases  and  p r o p e r t i e s  of  the  c o m p u t e d  so lu t ion  

for  g e n e r a l  cases ,  it  is poss ib le  to  have  a la rge  a m o u n t  o f  conf idence  tha t  the  s cheme  is, 

i n d e e d ,  c o m p u t i n g  the  co r rec t  so lu t ion  to the  equa t ion .  T h e  resul ts  have  imp l i ca t ions  for  

m o d e l s  of  flow pas t  s l ende r  ax i symmet r i c  bod ie s ;  in pa r t i cu l a r  the  l eng th  o f  the  cavi ty  for  

such flows m a y  be  c o m p u t e d .  
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